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Two Modified Staging Algorithms for Path Integral
Monte Carlo Simulations

L. Cruzelro-HanssoN, J. O. Baum,* anD J. L. FINNEY*

Department of Crystallography, Birkbeck College, Malet St., London WCIE THX, United Kingdom

Received Januvary 18, 1991; revised August 21, 1991

Two algorithms which mix a staging procedure with a conventional
Metropolis importance sampling are derived. Their applicability in
simulating the thermal equilibrium properties of quantum systems is
tested in three systems; a quantum free particle, an electron in a hard
spheres crystal, and an electron in helium, We conclude that the two
algorithms are generally more efficient than others used previously for
the same systems, with a further advantage of being machine inde-
pendent and able to deal with both hard core and smogth potentials.
We also show that it is possible 1o model the properties of the electron
in helium with a hard core potential for the interaciion of the electron
with helium as well as the helium-helium interaction.  «© 1993 Academic
Press, knc.

1. INTRODUCTION

Feynman's path integral formulation of quantum statisti-
cal mechanics [17 makes possible the computer simulation
of the thermal properties of quantum systems. Indeed, the
statistical-mechanical properties of a quantum system may
be determined from the density matrix p(rg, rp; )
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where fi=1/kT, & being Bolizmann’s constant, T the
absolute temperature, and /4 the Hamiltenian of the system.
Applying repeatedly the partition of the unity matrix in
terms of a complete set of eigenstates |r) leads to
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where 1= f§/P. For 1 sufficiently small, the high-temperature
approximation of the density matrix is valid and
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where A* = #2f/m, 2nh being Planck’s constant and m the
particle mass. The [irst two factors in (3) represent the {ree
particle part of the density matrix, while the third factor
represents the effect of the potential field as a perturbation
on the free particle. The thermal average of a quantity A(r)

is
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This can be formally related to a ring polymer in a field ¥V
and whose beads interact harmonically with their nearest
neighbours with an elastic constant equal to P/A%f.
Approximation (3) is exact when P — oo, In practice, P
must be large enough for the potential encrgy to remain
approximately constant within the length A, = (#%t/m)'
For smooth polentials P can be of the order of 100. On the
other hand, for hard-core polentials, P must be much larger.
This creates two dillicultics. First, the larger P is, the more
rigid the corresponding polymer becomes and a conven-
tional Metropolis sampling leads to very low acceptance
ratios, Second, in the case of hard-core systems, the
quantum particle may become trapped in one of the many
potential minima, due to the barriers that separate them,

{n i,

i=1
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These difficulties may be tackled either by (1) improving the
expression of the propagator [2, 3] or {2) by devising new
sampling schemes that speed up the equilibration, including
the sampling of the normal modes of the polymer [4], the
closely related Fourier series path integral technique [5-77,
and the staging algorithm [37. Here we follow the second
strategy and derive two sampling schemes which are
inspired by the staging algorithm [3]. The performance of
the two schemes is compared with that of others for different
systems.

2. MODIFIED STAGING ALGORITHMS

We follow Sprik ef al. [3] and consider the ring polymer
In two stages: in a first stage a so-called A-chain is defined
with P, beads r¢,

ri {i=0,..P,) with ri=ri; (5)
a second stage, the B-chain, is defined by inserting extra
beads within those of the A-chain. That is, the B-chain
beads have coordinates r},

¥ di=1, 0, P j=0,.., Py)

b
ri=Ri+4, with A,,=4,,=0

C RE= R P,.

with  rp, =r{

(6)

It is seen from (6) that the B-chain beads are generated here
as deviations from the straight line connecting two adjacent
A-chain beads, Sprik ef ¢l have shown that (4) can then be
transformed to
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Both of the sampling schemes presented here are based on
this expression and take the A-chain as a crude guide for the
B-chain, as do Sprik er al. [3]. A major difference, however,
is that the present procedures do not build the density
matrix in stages; instead, they restrict staging to the
sampling and always refer to the B-chain density matrix.
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A main advantage of concentrating on the B-chain is that
the larger number of beads of this chain allows the use of the
high-temperature approximation of the density matrix. A
further difference is that here the acceptance criteria are
defined as in Metropolis et al. [8].

2.1. Modified Sraging Algorithm I

According to the condition of microscopic reversibility,
the acceptance criterion for a move of R — R’ is

A(R'/R)=Min [1 TRR) PR} P(R’)} (8)

" T(R'/R) P(R)

where T(R'/R) is the transition probability from configura-
tion R to R’ and P{R) is the equilibrium distribution, i.e.,

P(R):exp[—PaT“—PQP,,TA—Pbe le, (9)
where

1 P

Th=sp 2 i—riss)? (10)
1 Pa Py .

T'=— % Y (4,—4,_,) (i1)
24 i=1 j=1 Y ’
Py Py

V=73 ) Vi{ri} {4;}) (12)

i=1 j=1

In this algorithm, first an A-chain bead is moved. If this
move is accepted, then the two sets of P, beads in the B-
chain connected with the A-chain bead are also generated.
The moves of the B-chain beads are thus strongly correlated
with the A-chain bead moves.

" Let the beam moves be generated with a random uniform
distribution in a box. In this case

(/i)

T 0

and the acceptance criterion is

A](r,"‘/rf]=Min|:I,exp(— 4 AV}’-—PHATT)] (14)
Pan
with
Fa Py
AVi=3 Y AV )=V, )Yy (15)
i=1 j=1



112

and

1
AT =5 Wi D+ (i )
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To determine the acceptance criteria for the B-chain bead
moves we must note that the latter only occurs if the
A-chain move has been accepted. The probability of
generating B-chain moves must contain this condition.
Because of the form of (7), however, the generation of the
values of the variables 4, is independent of the values of the

¢ coordinates and the transmon probability for a B-chain
move is the product of the transition probability for the 4,
change with the probability that the r?{ move has been
accepted. For the B-chain beads connected to r? we obtain
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Using a random uniform distribution already induces
diffusion of the quantum particle. The amount of diffusion
may be further increased by periodic center-of-mass moves.
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These do not alter the configuration of the chain that
represents the electron {thus keeping its kinetic energy
constant), but they do change its potential energy. The
corresponding acceptance criterion A({r’}/{r}})om 18
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2.2, Modified Staging Algorithm 11

The second modified staging algorithm breaks further
away from that suggested in [3]. It relies on the fact, clearly
indicated in expression (7), that the variables +? and 4 are
independent. Here, when an A-chain bead r? is moved, two
sets of associated P, beads are created, with the same devia-
tions 4, but relatwc to the two new lines limited by ¢ |,

ri®and ri% r{, _, respectively. Expression {11) will remain
unchanged and the acceptance criterion for this move is

{rlf 4 T+1J'}/r¢ * {ry’ I+1j})
=Min[1,exp(—PuATj.‘—

2 )] @

where
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The moves of the B-chain beads are generated by sampling

the variables 4, separately. The acceptance criterion for the
latter is

Ay(4y/45)

:Min[l,exp(—PadTﬁ-—PﬂP AV;‘I):I, (24)
al b

where
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ATﬂ:ﬁ[(dif Ay P+ (A — A4y
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abd

As for Algorithm I, also in this case the center of mass
moves may be attempted periodically, with the same
acceptance criterion (21),
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In both algorithms, the gaussian part of the acceptance
criteria can be avoided using Levy's interpolation formula
for a conditional Brownian motion to sample directly from
the gaussian distribution [9, 10]. However, we have found
that the acceptance criteria specified above are computa-
tionally more efficient.

Let us emphasize at this point the difference between the
two modified staging algorithms just described and the
original staging algorithm [3]. In the two algorithms
proposed here, acceptance of the A-chain bead move does
not involve the generation of a large number of the two
associated B-chain portions that characterizes the original
staging algorithm.

Let us also emphasize the difference between the two
algorithms now proposed. Algorithm I follows the original
staging algorithm closely in that r¢ and rﬁ} are treated as the
main variables. Algorithm II treats r{ and 4 as the main
variables. Thus, in Algorithm II, moving an A-chain bead
drags the two connecting B-chain portions with it, but
maintaining the values of 4, and each B-chain bead can be
moved independently by sampling 4, separately.

A resemblance between the two algorithms presented
here and that of Pollock and Ceperley [2] 1s that both
resort to multibead moves. A distinction is that already
shared with the staging algorithm [3], namely that the
latter allows bead moves in different length scales, large for
the soft A-chain and smaller for the more rigid B-chain. As
stated in [3], these different length scales are very impor-
tant for overcoming the large barriers encountered in
systems such as that described in Section 3.2. On the other
hand, Pollock and Ceperley’s method [2] relies essentially
on improved expressions for the density matrix elements.

3. APPLICATIONS

Some controversy remains as to the best estimator for the
kinetic energy of a quantum particle [11-147. It has been
pointed out that Barker’s estimator [11] leads to a variance
in the mean that increases linearly with the number of
beads, P,P, [12]. On the other hand, Berne’s estimator
introduces a correlation with the potential energy which has
a greater than linear growth with P, P, [13]. More
recently, however, it has been shown that the latter con-
siderations are in fact algorithm-dependent, the general
conclusion being that Berne’s estimator is to be preferred for
algorithms involving multistep moves [ 141, such as the two
described above. However, Berne’s estimator cannot be
used in the next two cases (for which the potential energy is
gither zero or infnity) and in this paper all the values of
the kinetic energy have been evaluated using Barker’s
estimator:
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The potential energy Ep which is finite for an electron in
helium is estimated as

1 Pa Py
— b
EP_Pan 52 Z V(ry)

=1 j=1

(28)

A quantity that has been identified as a good indicator of
the relative influence of the ground state and the excited
states in the thermodynamic properties of an extra electron
is the bead bead mean square displacement R*(1—¢’)
[15,16]:

R = Ir(n)—r(£)*p, (29}
¢ being the imaginary time and ¢ --- » indicating thermal
averaging. For a free electron, R? is parabolic, while for a
localized electron a plateau appears, due to the strong
influence of the ground state. R(f#/2) can be taken as a
measure of the electron size.

A pass is defined as a set of Monte Carlo moves in which
all the particies have been moved once. The number of
electron passes for Algorithm I is calculated as

Nl=N"+ N & 2% (P, 1))P,P,, (30)
where N““4 is the number of A (B)-chain bead moves
attempted. For Algorithm IT we have, instead,

Niw=(N% (2P, — 1)+ NY)/P P, {31)
The number of accepted passes N3t can be obtained by
substituting N’ by N</4?, the number of A (B)-chain bead
moves accepted. There are no established rules as to what is
the optimal acceptance ratio N33 /N, in a Monte Carlo
simulation [[17]. Our simulations indicated that the value of
the acceptance ratio is more important for Algorithm I, for
which a value larger than 50 % leads to a rapid convergence
of the structural properties such as the size, while a value
lower than 10% was found best for the convergence of the
kinetic energy. In both cases performances are optimized by
keeping the acceptance ratio for A-chain bead moves
smaller than that of the B-chain.

The simulations were made on the University of London
Computer Centre Cray X-MP/28 and on the Cray
X-MP/416 at RAL and the computational time will be
specified in each case. The errors indicated correspond to
the standard error corrected by the inefficiency of the
sampling as estimated in [13].

3.1. The Free Electron

Because (3) is an exact solution of the quantum-free par-
ticle, valid for any number of beads, this very simple system
constitutes the most direct and simple way of checking the
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computer programs and of making a preliminary test of the
performance of the two algorithms, Tabie I gives the results
of simulations for three different vaiues of P, and P,. In
each row the top line is for Algorithm T and the bottom line
is for Algorithm II. When more than one CPU time is dis-
played for a specific number of beads, the shorter times are
intermediate results to demonstrate the convergence of that
simulation. Table I shows that, as far as the electron size is
concerned, both algorithms converge cqually fast (the
standard errors for size are smaller than 0.1% in all cases
and are not indicated). The same does not apply to the
kinetic energy which indicates that Algorithm I performs
better than 1. This is true even for a small number of beads,
as is clearly seen from the respective standard errors. The
better performance of Algorithm IT is due to its being more
effective in sampling configuration space, which is related to
the lack of correlation between the A-chain bead and the
B-chain bead moves. Furthermore, it generates a greater
number of passes per CPU second.

In a more complete assessment of the two algorithms it is
important to determine whether these results are system
dependent. The systems chosen are interesting from the lat-
ter and also from a purely physical point of view. Indeed, the
steepness of the potential field makes the electron in a hard
spheres system one of the most difficult to model by path
integral Monte Carlo. On the other hand, from the physical
point of view, hard core interactions constitute one of the
essential ingredients of the interaction of an electron with
any atom. The excess electron in a liquid helium system has
a linite potential and has also been well studied experimen-
tally [18].

3.2. An Electron in a Hard Spheres Crystal

~ The potential for the interaction of an clectron with a
hard sphere is

Vi{rih =0 \iri—ril>0/2
iy

V({rt)=0w 3,lr—rl<0/2
(=1, Pyij=1, s Pyis=1, .. M);

o is the diameter of the hard spheres and r*, s=1, .., M,
represents the coordinates of the M hard spheres. In our
simulations M was 432.

We have considered a temperature such that 1=6qg, a
density po® = 0.201, p being the number density of the hard
sphere system and a minimum distance & of appreach
between the electron and the hard spheres of d/o =0.5.
These values define a whole class of situations parametrized
by the actual value of ¢. Table Il displays the results
obtained. The exact value quoted for the kinetic energy
is calculated by combining the Wigner-Seitz and

CRUZEIRO-HAI‘#SSON, BAUM, AND FINNEY

TABLE 1
The Free Particle (Atomic Units)

P, P, BE, Size Passes CPU(s)
4 4 1.52 £0.09 501 514390 100
1.49 + 0.03 499 932250
8 8 149 +0.50 499 571370 300
1.42 +0.09 5.00 823680
1.42 +0.31 498 1175425 600
1.53 +0.08 4,98 1659190
16 8 1.82+1.30 5.00 456523 600
1.35+0.13 499 726000
1734028 498 1132810 1500
1.42 4+ 0.09 4.99 1789920
s} e} 1.50 5.0

pseudopotential methods [19]. As expected, the number of
beads needed to obtain convergence in this system is much
larger. This can, of course, be improved by the use of higher
order approximations for the propagator (1). As an empiti-
cal rule we found that the larger the size of the electron, the
greater the number of beads needed for an accurate
representation. Therefore, the extended states of electrons in
a crystal, such as those in Table IT constitute some of the
hardest to simulate.

Table II shows that the faster convergence of the kinetic
energy for Algorithm IT already observed, is here much
more marked. One of the causes is the also very marked
decrease in the number of passes (compared to those
achieved by Algorithm II in the same CPU time). This is
because the generation of two B-chains becomes more and

TABLEII

Electron in a Hard Spheres Crystal {(Atomic Units)

P, P, BE, Size Passes CPU(s)
128 32 214122 4.60 +0.01 8169 10000
54+5 3734039 41712
231+23 4.52+0.01 11959 15000
5845 426 +0.69 61834
20600
5545 4.56 +0.77 81515
128 64 1271 + 11t 4.82 +0.04 6637 15000
67+7 4194021 35001
1204 1+ 121 4,836 1+ 0,04 8741 20000
73+8 453 +038 45956
1153+ 125 4934005 10796 25000
i1+7 4.71 £ 040 56643
o0 loq) 74 487

2 Estimated from the simulation.
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more time consuming as P, increases. This is overcome by
letting the A-chain acceptance ratio decrease. However, as
Table IT indicates, the convergence ratio of the kinetic
energy is still much worse than that of Algorithm I1. On the
other hand, a reverse behaviour is observed for the struc-
tural properties such as the size. This is already apparent in
Table IT and becomes enhanced if the acceptance ratios for
Algorithm I are increased (results not shown). However, the
convergence rate of structural properties for Algorithm I1 is
only about 0.5-0.75 that of Algorithm I and therefore does
not compare with the slowness of the convergence rate for
the kinetic energy of Algorithm L

The results shown in Table 11 are for a relatively low den-
sity of pg® =0.201. As the density increases, it becomes more
difficult to overcome the infinite barriers that the hard
spheres represent. Simulations with po’=0.5 showed,
however, that the rates of convergence of the two algorithms
proposed here are essentially those indicated in Table I1.

In summary, our simulations indicate that for this system
there is a specialization, and while the kinetic energy is best
calculated with Algorithm II, the investigation of structuraj
properties such as the size and those presented in Section 3.4
is better made with Algorithm L.

3.3. An Electron in Helium

The electron-helium imteraction is modelled using the
pseudopotential as parametrized by Coker ¢t al. [20], while
the helium—helium interaction is a standard Lennard-Jones
potential with o}, = 2.556 4 and &}, = 10.22 K [20].

Table [11 shows the results of simulations with T= 309 K
and popl 3=0.5. It is readily apparent that the number of
beads needed for a good representation of the quantum
properties of the electron in helinm is much smaller than
that needed for an electron in a hard spheres crystal.

1.2
0.9]
0.6
0.3]
i g
FI1G. 1. The etectron bead—solvent radial distribution function g(r) for

an electron in helium {selid line) and a hard spheres fluid {dashed line)
(see text].
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P <1000 is the expected requirement for a smooth
potential.

It is the standard interpretation that electrons in helium
are trapped in bubbles [18, 20]. Our results are in agree-
ment with those of Coker ez af. [20] and corroborate that
interpretation. In fact, the values of the kinetic energy in our
simulations are even closer to that of an electron in a spheri-
cal box [20]. Slight discrepancies between our and Coker
et al’s results may be due to the fact that while the latter
introduced a cutoff of 2.5¢},, we have considered inter-
actions between all particies in the system.

Also here we notice the specialization that is manifest for
the hard sphere system, with Algorithm I performing better
for the structural properties, including the potential energy.
The differences are nevertheless not so dramatic in the case
of Algorithm 1T which comes out as a more balanced and
more efficient algorithm for this smoother potential.

3.4, A Hard Sphere Model of an Electron in Helium

Since the electron-helium potential used in the last
subsection is essentially repulsive it is interesting to find
out whether a hard sphere model, with suitably defined
parameters, is able to reproduce the properties of an elec-
tron in helium. A similar study has been made before [217,
but a different fitting procedure led to a different hard
sphere system. For the hard sphere system, ¢ is well defined
as the shortest distance that two particels can approach
each other, which can be retrieved from the respective radial
distribution function (RD¥ ) which exhibits a discontinuity
at that value. Because of the continuous nature of the
Lennard-Jones potential, however, the corresponding RDF
also varies continuously, which makes the definition of dis-
tance of minimum approach rather ambiguous. Here, an
effective o i1s defined so that a best comparison between the

%)

J*,_{v/ T ¥ T
1 2 3 4 5
rlo
FIG. 2. The electron center of mass—solvent radial distribution

function g, (#) in helium (solid line) and a hard spheres fluid {dashed line)
(see text}).



FIG. 3. The electron bead-electron bead mean square displacement R
in helium (solid line) and a hard spheres fluid (dashed line) (see text).

two systems is obtained. Figures 1-4 show the results for a
hard sphere fluid with ps® =0.035, i/o = 16, and djo = 1.2.
Figures -3 show that the behaviour of the electron is
indeed well represented by this hard sphere model. In par-
ticular, the “bubble” associated with the electron in helium
is also observed for the electron in this hard spheres fluid, as
is clearly seen from Figs. 1 and 2 which show the RDFs; ie.,
the distance of closest approach of the electron center of
mass to the hard spheres is about three times that of the
individual electron beads to the hard spheres. This means
that the electron is enclosed by, rather than wrapping
around, the hard spheres, forming a bubble. The structural
similarity displayed in Figs. 1-4 is also apparent in the
kinetic energy which in this model is 35+ 6, a value that
compares well with those in Table I1T.

These results show that bubble formation for an ¢lectron
in helium is due to excluded volume effects. This same con-
clusion was reached by previous studies [ 20, 21]. However,

the equivalent hard sphere system in Laria and Chandler's

article [21] is different from ours, This is due to the dif-
ference in the fitting procedure: while ours is made in real

2 T T 7

1

FIG. 4. The solvent-solvent radial distribution function gy, (r) in
helium {solid line) and a hard spheres fluid {dashed tne) (see texi).
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TABLE IIT

Electron in Liquid Helium (Atomic Units)

P, P, BEy BE, Size Passes CPU(s)
16 16 1143 47740.18 228 +0.02 15912 3700
4+t 5.60+0.14 2.33+0.02 20613

17+5 4934012 2294001 31563 6700
23+ 5.66 +0.09 236 £+0.0! 41227

32 16 27x10 5224007 2304+ 0.0t 14435 6000
2542 5134018 229+ 0.03 18371
30410 5.14 £ 0.06 2,30+ 0.01 21478 8000
24+12 5.19+0.18 228 +£002 27542
2619 526 £0.09 231 + 0.0t 28375 10000
25¢1 5134011 2271002 36685

* 2747 6.5+1 2247 14400

* P 1000, from Ref. [15].

space, Laria and Chandler’s is made in k-space. They
evaluate the structure factor of the helium system and deter-
mine the hard sphere diameter and density such that its
structure factor’s first peak position and height coincide
with that of the helium system. This leads to a larger ¢ and
a correspondingly larger density than we report here. Our
main aim is to obtain a good representation for the eiectron,
while Laria and Chandler’s fitiing procedure concentrates
on the helium system. The success of our fitting procedure
as far as the electron states are concerned can be judged
from Figs. 1-3. On the other hand, the approximation
involved in the representation of the helium system by the
hard sphere system we have selected can be measured from
the difference of the respective RDFs shown in Fig. 4.

4. DISCUSSION AND CONCLUSION

We propose two sampling schemes for path integral
Monte Carlo simulations which bring together a staging
procedure and conventional Metropolis sampling. In Algo-
rithm [ there is a dependence between the moves of the two
stages, while in Algorithm I the two stages move in an inde-
pendent way, They are highly vectorisable and thus
particularly suited for supercomputers and, also, they are
flexible and not machine directed, unlike the original
staging algorithm of Sprik et a/. [3] which was tailored to
the Cyber 205.

We have tested the performance of the two sampling
schemes in different systems. While the free electron can be
regarded as an exercise to check the algorithms and make a
preliminary probe of their performance, the hard sphere
model and the helium model are interested from more than
one point of view. Indeed, from a computational point of
view, path integral simulations are more difficult the sieeper
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the potential field is and thus the hard sphere model
provides a stringent test for the performance of an algo-
rithm. From the physical point of view, the hard sphere
model is a basic model for electron solvation [15, 16]. The
helium model, on the other hand, provides a test of the
performance of the algorithms for smoother potentials and
physically is a system on which a great wealth of informa-
tion has been accumulated [18]. Both algorithms perform
very well as far as the structural properties are concerned
and the CPU time invoived is competitive with other algo-
rithms. Most striking is the convergence of the kinetic
energy of the electron for Algorithm II. Indeed, the kinetic
energy is one of the slowest quantities to converge and its
estimation in previous studies of the electron in a hard
sphere system involved resorting to a higher approximation
of the density matrix 3] Here we employ only the
primitive algorithm (3) and obtain the kinetic energy of
the electron in shorter CPU times. The same applies to the
simulation of the electron in helium, for which the kinetic
and potential energics and the electron size converge in less
than half the time of other methods [20]. In short, the
flexibility demonstrated by the algorithms in dealing with
both steep and smooth potentials, as well as their efficiency
and machine adaptability make them (especially Algo-
rithm 11} generally very useful for path integral calculations.
We have also confirmed that the properties of an electron
in helium can be simulated with a hard sphere fluid model.
Here, the bubble formation, which in other systems is due to
an atiractive interaction between the electron and the sol-
vent, is caused by a strong repulsion between the electron
and the solvent. This is in agreement with a previous study
by Laria and Chandler that showed that the behaviour of an
electron in helium can be understood essentially in terms of
excluded volume effects. The hard sphere equivalent model
presented here is, however, different from that of Laria and
Chandler because of the difference in fitting procedures.
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